

COLLEGE OF ENGINEERING

The **College of Engineering** was established as a distinct unit of the University in 1897, although a program in civil engineering was offered in 1873. The college comprises five departments: aerospace and mechanical engineering, chemical and biomolecular engineering, civil and environmental engineering and earth sciences, computer science and engineering, and electrical engineering.

Since its inception, the College of Engineering has regarded the primary purpose of all higher education as the development of the intellect, discriminatory power, and judgment in all students to enable them to arrive at sound decisions in their personal lives and in the professional lives they will pursue after graduation. The programs of studies offered in the various departments of the college are, therefore, constructed to give the student a good knowledge of the basic sciences and engineering principles, and to prepare the student for the manifold duties of an educated professional and for the cultural life of an educated person. Classroom instruction is amplified by laboratory work and design experiences that give the student insight into the application of principles to practical problems. Detailed information about the College of Engineering and its many programs can be found at engineering.nd.edu/ (<https://engineering.nd.edu/>).

Engineering at Notre Dame combines technical inquiry with a creative bent (novel methods of using and producing materials, components, devices, and systems) to develop innovations that can improve the health, well-being, and quality of life for all persons. Consistent with the University's Catholic mission and heritage, the College of Engineering's mission is founded on the principle that the creation and transfer of knowledge should reflect a profound and complete respect for the dignity of all persons and for the greater common good of humanity. To appropriate the words of the University's founder, Rev. Edward A. Sorin, C.S.C., the college must be, first and foremost, a force for good in the world.

To that end, the college will continue to engage in transformational research in its core competencies – energy, biomedical/bioengineering, environmental science/engineering, and national/ personal security – as they address the important needs of humanity, while inspiring students of all levels to scholarship and service. It will also continue to develop its expertise in electronic materials and devices, wireless and information systems, natural hazard mitigation, flow physics and control, geochemistry and geosciences, hydrology, and computational science and engineering, translating research outcomes into commercial ventures as possible, so that the efforts of Notre Dame engineering researchers produce the greatest good for society.

Accreditation and Academic Association

The College of Engineering is a member of the American Society for Engineering Education. Notre Dame's engineering programs are accredited as stated on each program's website. Please refer to engineering.nd.edu/ (<https://engineering.nd.edu/>) for additional details on accreditation.

Licensure of Engineers

Obtaining engineering licensure requires a degree from an ABET accredited degree program, passing certification examinations, and experience in the appropriate field. It is not necessary to obtain licensure immediately, but several engineering fields of work will ultimately. Recent graduates benefit by applying early for the required state examination.

More information on licensure can be found at ncces.org/licensure-engineering/ (<https://ncces.org/licensure-engineering/>).

Programs and Degrees

The College of Engineering offers curricula leading to the undergraduate degrees listed below:

B.S. in aerospace engineering
B.S. in chemical engineering
B.S. in civil engineering
B.S. in computer engineering
B.S. in computer science
B.S. in electrical engineering
B.S. in environmental earth sciences
B.S. in environmental engineering
B.S. in mechanical engineering

To complete all degree requirements, the student must take and pass all of the courses specified in the *Bulletin* for the given degree and must earn the total minimum number of course credit hours specified for the degree.

To obtain two undergraduate degrees from the College of Engineering, a student must successfully carry out an approved program of courses totaling no less than 157 credit hours, depending on the programs. These must include all of the technical courses specified in the *Bulletin* for each degree. Students who want to pursue two engineering degree programs should contact the Dean's office in order to understand all the requirements associated with earning both degrees.

The college offers advanced degrees in the following areas:

M.S. in aerospace engineering
M.S. in bioengineering
M.S. in chemical engineering
M.S. in civil engineering
M.S. in computer science and engineering
M.S. in electrical engineering
M.S. in environmental engineering
M.S. in earth sciences
M.S. in mechanical engineering
Ph.D. in aerospace and mechanical engineering
Ph.D. in bioengineering
Ph.D. in chemical engineering
Ph.D. in civil engineering and geological sciences
Ph.D. in computer science and engineering
Ph.D. in electrical engineering

The Department of Civil and Environmental Engineering and Earth Sciences also offer a Masters in Engineering professional degree (M.Eng.). The details of this program can be found in the Graduate School *Bulletin of Information*.

Engineering Common Core

The common core consists of a set of the courses required to be completed by every engineering student. It is composed of the University Core, Basic Science Core, and Basic Engineering Core. Each are described in the sections below:

University Core Curriculum

Students enrolled in the College of Engineering must satisfy all University Core Curriculum requirements as detailed below:

Six courses in the liberal arts

1. Quantitative Reasoning
2. Science and Technology
3. An additional course in Quantitative Reasoning or Science and Technology
4. Arts and Literature or Advanced Languages and Cultures
5. History or Social Science
6. Integration, or a course from an area not yet chosen in 4 or 5

Four courses exploring explicitly Catholic dimensions of the liberal arts

1. A foundational Theology course
2. A developmental Theology course
3. A Philosophy course
4. An additional Philosophy course or a Catholicism and the Disciplines course

Two courses in writing

1. A University Seminar
2. A Writing and Rhetoric course, or another writing-intensive course.

The undergraduate Core graduation standards are explained in the University Requirements section of this *Bulletin*. A Notre Dame course taken to satisfy a Common Core requirement can also be used to satisfy a Basic Science or Basic Engineering core requirement.

Basic Science Core:

27 credit hours. MATH 10550; MATH 10560; and two additional math courses totaling 7 credits (nominally MATH 20550, MATH 20580); CHEM 10171/CHEM 11171; PHYS 10310; and four more credits of general science courses as directed by the department (nominally PHYS 10320).

Basic Engineering Core:

6 credit hours. EG 10117 Engineering Design (3 cr.) and EG 10118 Engineering Computing (3 cr.).

First Year of Studies

A first-year student intending to pursue any of the College of Engineering degree programs should, as a minimum, complete the following courses by the end of the first year:

Course	Title	Hours
First Year		
First Semester		
WR 13100	Writing and Rhetoric	3
MATH 10550	Calculus I	4
CHEM 10171 & CHEM 11171	Introduction to Chemical Principles and Introduction to Chemical Principles Laboratory ¹	4
EG 10117	Engineering Design	3
Moreau First-Year Seminar		1
		15
Second Semester		
University Seminar ²		3
MATH 10560	Calculus II	4
PHYS 10310	Engineering Physics I: Mechanics	4
EG 10118	Engineering Computing	3

First Year Technical Elective	3
Hours	17
Total Hours	32

¹ Computer Science students may be able to delay taking CHEM 10171 until a later semester. Students should consult their advisor for more information.

² The University Seminar may be selected from an appropriate history, social science, fine arts, advanced languages and cultures, literature, first theology, or first philosophy course. Any course coded as satisfying the University Seminar requirement will normally satisfy the university's writing requirement as well.

General Requirements

The University of Notre Dame reserves the right to change at any time regulations included in its *Bulletins* with respect to admission to the University, continuance therein and graduation therefrom. Every effort is made to give advance information of such changes.

The College of Engineering requires students to carry a minimum of 12 and no more than 19 credit hours. In accordance with guidelines established by the Undergraduate Academic Code, students may apply for exceptions to these limits through requests submitted to the Associate Dean for Undergraduate Programs. Normally a cumulative and recent-term grade point average of 3.2 or higher is required to obtain permission to exceed 19 credit hours for a semester. Interested students should contact the Associate Dean for Undergraduate Programs for specific information.

Course Multi-Counting Policy

Completion of the engineering degree can require up to 128 credit hours of coursework. The College realizes that students may want to pursue other fields of study to complement their engineering degree. To afford these students the academic flexibility to do so, the College has adopted a multi-counting policy between a student's engineering field of study and a secondary academic credential (e.g. second major, supplemental major, minor, etc.). The multi-counting policy is:

1. To earn a specific academic credential (e.g. degree, major, minor, etc.), students must complete requirements defined in the University Core, the College and Major program, and any associated secondary academic credentials.
2. All students must earn the minimum number of unique credit hours required by their engineering degree program (see later sections in this bulletin for more information on the required credits for each engineering program).
3. Students can use one course to satisfy a University requirement, a College or Major requirement, and secondary academic credential requirement.
4. There is no limit to the number of courses that can be used for multi-counting, however a multi-counted course can only be used once in any single category (University, College/Major, and Secondary Academic credential).
5. If a student is pursuing two secondary credentials that require the same course, the course may be "cross counted" (i.e. use one course to satisfy two requirements) but must be replaced by another course in one of the programs ("Waive and Replace"). Students must obtain approval for "Waive and Replace" from the Associate Dean for Undergraduate Programs.

6. University Seminars and writing-intensive courses are designed to satisfy both a writing and University requirement or requirement of a major program of study. University Seminar, by definition, fulfills a University requirement and is not considered a double count under this rule. Writing Intensive courses may fulfill the University writing requirement and also another element of the University or College Program core.

This policy applies to academic programs contained within the college of engineering. If a student is pursuing a secondary credential outside the college of engineering (e.g. minor in Theology or supplementary major in ACMS) courses will satisfy secondary program requirements per the policies of the home college or as agreed to by the two colleges. Students should contact the Associate Dean for Undergraduate Programs with any questions on this policy.

Grand Challenge Scholars Program

The Grand Challenge Scholars Program allows engineering students to engage in transformational passionate learning and research activities that address the important needs of humanity, to inspire students to the highest levels of scholarship and service, and to enrich our students with Notre Dame's ideals and virtues. Student participation is voluntary, with an application process and open to anyone in good academic standing. Most students will begin in their sophomore year to complete the five program components in about two years. The five program competencies include:

1. Project or Research Experience,
2. Interdisciplinary Curriculum,
3. Business/Entrepreneurship,
4. Multicultural/Global Dimension, and
5. Social Consciousness/Community Engagement.

Students will define their own path to meet these program components, but the College of Engineering aims to support student aspirations wherever possible. To that end, there is intentional flexibility in the requirements. More information can be found at [engineering.nd.edu/departments-programs/grand-challenge-scholars-program/](https://engineering.nd.edu/departments-programs/grand-challenge-scholars-program).

International Study Opportunities

There are several semester- or year-long opportunities during the academic year for juniors to study abroad. Please consult the Notre Dame Global website (studyabroad.nd.edu (<https://studyabroad.nd.edu/>)) for specific details on programs and requirements. Course offerings at each location may change from year to year and not all locations are appropriate for every major in the college. Students should contact their advisor or DUS to discuss what specific semester or year long study options are available for their chosen course of study.

The college currently offers summer programs for all engineering undergraduates who have completed the first year engineering curriculum. Current locations for study include London, England; Alcoy, Spain; Dublin, Ireland; Berlin, Germany; and Rome, Italy. Admission to all programs is competitive and requires demonstration of strong academic performance.

The Moreau Program

Students will take a 1-credit Moreau First-Year Seminar course during their first year and complete their 1-credit Moreau experience in their final year.

Engineering Business Practice

The college recognizes the importance of providing its graduates with opportunities to learn how engineers function in the world of business and offers a multi-course sequence (EG 40421/EG 40422) that provides education in this area. Students in all majors of the college may take at least the first course to satisfy technical elective requirements.

The courses increase the effectiveness of engineering graduates by developing an understanding of the dynamics of business operations. They include issues related to ethics, leadership, and business practices such as marketing, management, finance, and human resources, and they examine the professional and leadership characteristics of modern industrial leaders. In the second course, students develop a business plan and execute it using a computer simulation program.

Combination Five-Year Programs with the College of Arts and Letters

The college recognizes the benefits of a broad background in cultural, social, and technical subjects and, in 1952, in cooperation with the College of Arts and Letters of the University, instituted a five-year program that combines the liberal arts program with the requirements of the various engineering programs. Students who complete this combination program will earn two degrees: the degree of bachelor of arts and the degree of bachelor of science in the engineering major pursued. Dual-degree students are eligible to join the Reilly Program in Engineering and Arts and Letters described at reilly.nd.edu/undergraduate/dual-degree/ (<https://reilly.nd.edu/undergraduate/dual-degree/>).

Students pursuing this program must have strong scholastic ability and be acceptable to both the dean of the College of Arts and Letters and the dean of the College of Engineering. Application to the program is normally done by the end of the second year, but choice of a particular field in Arts and Letters may be deferred until the end of the third year.

The general sequence of courses in the five-year engineering-liberal arts program is found under "Dual Degree Programs" later in this section of the *Bulletin*.

Combination Five-Year Dual-Degree with the College of Science

The college also recognizes that a background in the natural sciences or mathematics, which are also foundational to a strong liberal arts experience, can provide engineering students with a broader context for solving societal problems and meeting humanity's needs. Thus, in 2013, the colleges of engineering and science approved a plan of study that would allow students to earn a bachelor's degree in each college in five years.

The general requirements for this program are found under "Dual Degree Programs" later in this section of the *Bulletin*.

Combination Five-Year Program with the Mendoza College of Business

To address the needs of engineering students who wish to integrate management and engineering, the College of Engineering and the Mendoza College of Business have established a program in which a student may earn the bachelor of science degree from the College of

Engineering and the master of business administration from the Mendoza College of Business (there is no program where a student can earn dual undergraduate degrees from the College of EG and Mendoza College of Business).

The program is structured so that a student who has completed the first three years of the bachelor's degree program, if accepted through a competitive admissions process, completes the master of business administration and the bachelor of science in engineering by the end of the fifth year. This program may require summer or intersession work.

Students who wish to pursue this program should have a superior scholastic record in their undergraduate program and must apply to and be accepted by the MBA program during their third year in the College of Engineering.

The general sequence of courses in the five-year engineering-MBA program may be found under "Dual Degree Programs" later in this section of the *Bulletin*.

Combination Five-Year Program with Saint Mary's College

Students at Saint Mary's College may elect to earn a B.S. in biology, chemistry, or mathematics from Saint Mary's while simultaneously earning a B.S. in a related engineering program at Notre Dame. This program requires five years of study. When approved for this program, students at Saint Mary's College, Notre Dame, Ind., may take a combination program of science classes at Saint Mary's and engineering classes at Notre Dame beginning in their sophomore year at Saint Mary's. The student will earn her bachelor of science degree from Saint Mary's at the end of the fourth year, and complete her bachelor of science in engineering degree in her fifth year at Notre Dame. Students interested in this program must consult the appropriate advisor(s) at Saint Mary's College before enrolling in required courses at Notre Dame.

Combination Five-Year Programs with Other Schools

The highly desirable objective to infuse more liberal arts and sciences work into the education of engineering students has also been met also through 3-2 engineering programs with select liberal arts institutions.

The University of Notre Dame has entered into agreements with Assumption College, Worcester, Mass.; Bethel University, Mishawaka, Ind.; Carroll College, Helena, Mont.; Elon University, Elon, N.C.; Franciscan University, Steubenville, Ohio; Goshen College, Goshen, Ind.; Kings College, Wilkes-Barre, Penn.; Loyola University Chicago, Chicago, Ill.; Saint Anselm College, Manchester, N.H.; Stonehill College, Easton, Mass.; University of St. Thomas, St. Paul, Minn.; University of St. Thomas, Houston, Tex.; Xavier University of Louisiana, New Orleans, La., and the Atlanta University Center, comprising Morehouse College, Spelman College and Clark Atlanta University in Atlanta, Ga., whereby the liberal arts and sciences part of a combination five-year program is given by these respective colleges and the engineering part by Notre Dame. In these dual-degree programs, the student spends three years at a college of first choice and two years at Notre Dame. After completion of the five-year program, the student receives a bachelor of arts or bachelor of science degree from the first college and a bachelor of science in engineering degree from Notre Dame.

The sequence of courses for any of these programs will vary depending on the program of study at the other institution. No attempt has been made to set up a rigid pattern, and each participating institution has some freedom concerning the choice and arrangement of courses, provided that the coverage in the areas of mathematics, physics,

chemistry, computing, introductory engineering, theology, philosophy, history, social science, and literature or fine arts is appropriate. It is expected, however, that students will complete the equivalent of the first two years of the desired College of Engineering program before applying for transfer.

To be eligible for an undergraduate degree, the student must complete a minimum of 62 credit hours at the University with a minimum of 75% of the degree credit hours (not less than 90 credit hours) earned after high school graduation through college and university courses, and be enrolled in the last semester on the main university campus. Please consult the Undergraduate Academic Code for further details.

Details of these programs may be obtained by writing to the institutions concerned or to the College of Engineering.

Graduate Programs in Engineering*

The Graduate School of the University of Notre Dame comprises four divisions: humanities, social science, science, and engineering. The division of engineering was organized in 1946 with power to grant advanced degrees in the departments of aerospace and mechanical engineering, chemical and biomolecular engineering, civil and environmental engineering and earth sciences, computer science and engineering, and electrical engineering. The general conduct of graduate work is under the jurisdiction of the Graduate Council of the University, the members of which serve as specified in the Academic Articles. Director of the program in the engineering division is the dean of the College of Engineering.

** Reference should be made to the Graduate School Bulletin of Information for details of these programs and to the Web at graduateschool.nd.edu/policies-forms/forms-policies-procedures (<https://graduateschool.nd.edu/policies-forms/forms-policies-procedures/>).*

Minors

The College of Engineering and its five departments offer several minors and concentrations which allow students to develop breadth (minors) or depth (concentrations) in areas that are of interest to them. Students can find the latest up-to-date listing of minors and concentrations on the college and departmental websites – engineering.nd.edu (<https://engineering.nd.edu>).

College Awards and Prizes

College of Engineering Awards

The Rev. Thomas A. Steiner Prize. From a fund established in 1948 by former students of Rev. Thomas A. Steiner, C.S.C., former dean of the College of Engineering, a cash award is made to seniors in the college who have been selected for their all-around excellence as students.

The Reilly Scholar Designation. The designation of Reilly Scholar is given annually to those fifth-year seniors enrolled in the dual Engineering/Arts and Letters program who have excelled academically and otherwise during their first four years as students.

The Americo Darin Prize. This prize recognizes several engineering students who have demonstrated the most improvement in academic performance over their first four semesters at Notre Dame. The prize was made possible by the Darin Family who established it in memory of their father, Americo Darin.

Edward and June Prein Family Award for Student Excellence in Engineering. The Prein Family award is a cash award that recognizes high-performing students in the College of Engineering who are active in service and leadership at the College and University levels.

Departmental Awards

Aerospace and Mechanical Engineering

Patrick J. Deviny Award. Presented each year to a junior aerospace student who has displayed the most diligence and persistence in the pursuit of undergraduate studies in aerospace engineering.

Vincent P. Goddard Design Award. Presented each year to a senior in aerospace engineering for outstanding performance in the aerospace design course.

Sigma Gamma Tau Honor Award. Presented each year to a member of the Notre Dame chapter in recognition of outstanding academic performance and demonstrated professional potential.

Pi Tau Sigma Honor Award. Presented each year to a member of the Notre Dame chapter in recognition of outstanding academic performance and demonstrated professional potential.

The Aero Propulsion Award. Presented each year to a senior in aerospace engineering for outstanding performance in the Gas Turbine and Propulsion class.

The Zahm Prize for Aeronautical Engineering was founded in 1946 by Dr. Albert J. Zahm, distinguished pioneer in aeronautics and at one time professor of physics at the University of Notre Dame. The award is made to the senior aerospace engineering student who, in the estimation of the faculty of the program, has achieved the most distinguished record in professional subjects.

The Zahm Prize for Mechanical Engineering. Beginning with 2007–08 year, awarded to a senior mechanical major who, in estimations of the faculty, has achieved the most distinguished record in professional subject.

Jerome L. Novotny Design Award. Presented each year to a junior in mechanical engineering for the best design in the junior heat transfer course.

The Rockwell Automation Power Systems Design Award. Presented each year to seniors in mechanical engineering for the best design in the senior mechanical engineering design course.

Best Undergraduate Research Paper. Presented each semester to the undergraduate who has written the best research paper based on research done during undergraduate research class for the semester.

Chemical and Biomolecular Engineering

American Institute of Chemists Award. Presented to an outstanding senior in the Department of Chemical and Biomolecular Engineering.

Chemical Engineering Alumni Award. Presented to one or more seniors who have an outstanding combination of scholarship and extracurricular activities.

Chemical Engineering Faculty Award. Presented to the senior with the highest scholastic average after seven semesters of study.

Chemical Engineering Research Award. Presented to one or more undergraduate students who have performed outstanding undergraduate research.

James P. Kohn Scholarship in Chemical Engineering. A fund dedicated to helping meet the financial need of top performing seniors.

John C. Treacy Award. Presented to the student with the highest score in thermodynamics.

Civil and Environmental Engineering and Earth Sciences

The American Society of Civil Engineers Activity Award. The Indiana section each year presents an award to the two senior students most active in the student chapter of ASCE.

Leroy D. Graves Academic Improvement Award. Presented to a senior civil engineering student for significant development in academic performance.

The Sydney Kelsey Outstanding Scholar Award. Presented to a senior civil engineering student for excellence and creativity in academics.

The Kenneth R. Lauer Award. Presented to a senior civil engineering student for leadership, integrity, and service to fellow students and community as determined by that student's classmates.

James A. McCarthy Scholarship in Civil Engineering. Presented to a junior civil engineering student for outstanding academic and professional excellence.

The Walter L. Shilts Award for Undergraduate Achievement. Presented to a senior civil engineering student who has best fulfilled his or her potential as a student through hard work and dedication to obtaining the best possible education.

The Rev. Alexander Kirsch, C.S.C., Award. To the senior receiving a degree in geological sciences who has evidenced high qualities of personal character, scholarship, and leadership.

Dr. Raymond C. Gutschick Award. To the graduating senior who has demonstrated the most promise in geological research as evidenced by a successful research project.

Computer Science and Engineering

Outstanding Computer Engineering Award. To the graduating senior in computer engineering who has evidenced high qualities of personal character, scholarship, and leadership.

Outstanding Computer Science Award. To the graduating senior in computer science who has evidenced high qualities of personal character, scholarship, and leadership.

Electrical Engineering

The James L. Massey Award. For achievement in electrical engineering, recalling communication theory, undergraduate teaching, and the Binary Examination.

The Basil R. Myers Award. For achievement in electrical engineering, recalling circuit theory, the English language, and St. George Day at Notre Dame.

The Arthur J. Quigley Award. For achievement in electrical engineering, recalling electronics, service to our neighbor, and the little man in the circuit.

The Laurence F. Stauder Award. For achievement in electrical engineering, recalling electrical power, the IEEE Student Branch, and the Notre Dame alumni.

The IEC William L. Everitt Award. For achievement in electrical engineering, computer engineering, or computer science, with an interest in the area of communications.

Student Organizations and Activities

Honor Societies

Tau Beta Pi

In 1960, the Indiana Gamma Chapter of Tau Beta Pi was installed at Notre Dame to foster a spirit of liberal culture in the engineering college and to recognize those who have conferred honor upon Notre Dame by distinguished scholarship and exemplary character as undergraduates in engineering or by their attainment as alumni in the field of engineering. Seniors in the top fifth of their class and juniors in the top eighth of their class are eligible for election under rigid standards of scholarship, character, leadership, and service.

Eta Kappa Nu

In 1962, the Delta Sigma Chapter of Eta Kappa Nu, the national honor society for electrical engineers, was installed at Notre Dame. Juniors, seniors, and alumni are elected to membership on the basis of scholastic attainment, leadership, and quality of character.

Pi Tau Sigma

In 1963, the Sigma Beta Chapter of Pi Tau Sigma, the national honor society for mechanical engineers, was installed at Notre Dame. Juniors, seniors, and alumni are elected to membership on the basis of scholastic attainment, leadership, quality of character, and a demonstration of probable future success in engineering.

Chi Epsilon

In 1966, the Notre Dame Chapter of Chi Epsilon, the national honor society for civil engineers, was installed at Notre Dame. Chi Epsilon recognizes those civil engineering students, faculty, and alumni who have displayed superior qualities in scholarship, character, practicality, and sociability during their professional careers.

Sigma Gamma Tau

In 1981, the Notre Dame Chapter of Sigma Gamma Tau, the national honor society for aerospace engineers was installed. This organization recognizes and honors those individuals in the field of aeronautics and astronautics who have distinguished themselves through scholarship, integrity, service, and outstanding achievement. Senior students who rank in the top third of their aerospace engineering class are eligible for admission.

Upsilon Pi Epsilon

In 2004, the Notre Dame chapter of Upsilon Pi Epsilon, which recognizes the academic excellence of students in the computing and information disciplines, was installed at Notre Dame. Outstanding juniors, seniors, and graduate students from the Department of Computer Science and Engineering are honored each year with induction.

Professional Societies

Several departments of the college actively support student chapters of their respective professional societies; these are:

American Institute of Aeronautics and Astronautics (AIAA)

American Institute of Chemical Engineers (AIChE)

American Society of Civil Engineers (ASCE)

American Society of Mechanical Engineers (ASME)

Association of Computer Machinery (ACM)

Institute of Electrical and Electronic Engineers (IEEE)

National Society of Black Engineers (NSBE)

Society of Asian Scientists and Engineers (SASE)

Society of Hispanic Professional Engineers (SPHE)

Society of Women Engineers (SWE)

The Engineering Leadership Council (ELC), a student organization with representation from the college's professional and honor societies, coordinates the activities of all engineering organizations and encourages the pursuit of a professional attitude in the student body of the College of Engineering. The ELC sponsors activities of general interest to the engineering student body.

- Academic Programs Housed in the Engineering Dean's Office (<https://catalog.nd.edu/undergraduate/engineering/engineering-deans-office/>)
 - Engineering Corporate Practice (Minor) (<https://catalog.nd.edu/undergraduate/engineering/engineering-deans-office/engineering-corporate-practice-minor/>)
- Aerospace and Mechanical Engineering (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/>)
 - Aerospace Engineering (BSAE) (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/aerospace-engineering-bsae/>)
 - Bioengineering (Minor) (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/bioengineering-minor/>)
 - Computational Engineering (Minor) (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/computational-engineering-minor/>)
 - Energy Engineering (Minor) (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/energy-engineering-minor/>)
 - Mechanical Engineering (BSME) (<https://catalog.nd.edu/undergraduate/engineering/aerospace-mechanical-engr/mechanical-engineering-bsme/>)
- Chemical & Biomolecular Engineering (<https://catalog.nd.edu/undergraduate/engineering/chemical-biomolecular-engr/>)
 - Chemical Engineering (BSCH) (<https://catalog.nd.edu/undergraduate/engineering/chemical-biomolecular-engr/chemical-engineering-bsch/>)
- Civil & Environmental Engineering & Earth Sciences (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/>)
 - Civil Engineering (BSCE) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/civil-engineering-bsce/>)
 - Construction Management (Minor) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/construction-management-minor/>)
 - Energy Studies (Minor) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/energy-studies-minor/>)
 - Environmental Earth Sciences (Minor) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/environmental-earth-sciences-minor/>)
 - Environmental Engineering (BS) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/environmental-engineering-bs/>)

- Resiliency & Sustainability of EG Systems (Minor) (<https://catalog.nd.edu/undergraduate/engineering/cvl-envmntl-engr-earth-sci/resiliency-sustainability-eg-systems-minor/>)
- Computer Science and Engineering (<https://catalog.nd.edu/undergraduate/engineering/computer-science-engr/>)
 - Computer Engineering (BSCP) (<https://catalog.nd.edu/undergraduate/engineering/computer-science-engr/computer-engineering-bscp/>)
 - Computer Science (BSCS) (<https://catalog.nd.edu/undergraduate/engineering/computer-science-engr/computer-science-bscs/>)
- Electrical Engineering (<https://catalog.nd.edu/undergraduate/engineering/electrical-engineering/>)
 - Electrical Engineering (BSEE) (<https://catalog.nd.edu/undergraduate/engineering/electrical-engineering/electrical-engineering-bsee/>)
- Dual Degree Programs (<https://catalog.nd.edu/undergraduate/engineering/dual-degree-programs/>)
 - Dual Degree Program with the College of Arts and Letters and the College of Engineering (<https://catalog.nd.edu/undergraduate/engineering/dual-degree-programs/college-arts-letters/>)
 - Dual Degree Program With the College of Engineering and the College of Science (<https://catalog.nd.edu/undergraduate/engineering/dual-degree-programs/college-science/>)
 - Dual Degree Program with the College of Engineering and the Mendoza College of Business (<https://catalog.nd.edu/undergraduate/engineering/dual-degree-programs/mendoza-college-business/>)

Officers of Administration

Patricia J. Culligan, Ph.D.

Matthew H. McCloskey Dean of the College of Engineering

Mark J. McCready, Ph.D.

Senior Associate Dean of the College of Engineering

Jason Hicks, Ph.D.

Associate Dean of the College of Engineering

Kerry L. Meyers, Ph.D.

Associate Dean of the College of Engineering

Michael B. Ryan

Associate Dean of the College of Engineering

Director for Strategic Initiatives and Operations

Leo H. McWilliams, Ph.D.

Assistant Dean of the College of Engineering

James Schmiedeler

Associate Dean of Faculty Development and Diversity

Kassie Spencer, MBA, CPA

Senior Director of Finance and Administration

Yvette Rodriguez

Director of Inclusive Excellence

Glen Niebur, Ph.D.

Chair of the Department of Aerospace and Mechanical Engineering

William F. Schneider, Ph.D.

Chair of the Department of Chemical and Biomolecular Engineering

Diogo Bolster, Ph.D.

Chair of the Department of Civil and Environmental Engineering and Earth Sciences

Jane Cleland-Huang, Ph.D.

Chair of the Department of Computer Science and Engineering

Gregory L. Snider, Ph.D.

Chair of the Department of Electrical Engineering

Advisory Council

Stephanie Adams

Texas

Ms. Audrey M. Beckman

Marco Island, Florida

Patricia L. Begrowicz

Pittsfield, Maine

Gregory J. Besio

Hinsdale, Illinois

Maureen A. Borkowski

Saint Louis, Missouri

Mr. James P. Bradley

Dallas, Texas

Mr. Alan Braun

Evansville, Indiana

Mr. Angelo J. Bufalino

Lake Forest, Illinois

Michael Colleran

Carbondale, Colorado

Matthew E. Connors

Hingham, Massachusetts

Jane DeFlorio

New York, New York

Jacqueline A. Dimpel

Salt Lake City, Utah

Dennis O. Doughty

Osprey, Florida

Mr. Anthony F. Earley, Jr.

Bloomfield Hills, Michigan

Mr. John F. Gaither, Jr.

Evansville, Indiana

Nicholas J. Galassi

Hinsdale, Illinois

Mr. Vincent N. Gregg

Wilmington, Delaware

Paul J. Guerico, Jr.

Moran, Wyoming

Ms. Diane G. Gulyas
Johns Island, South Carolina

Thomas Healy
South Bend, Indiana

Luis Hernandez
Cary, North Carolina

Mr. James H. Hunt, Jr.
McLean, Virginia

Christine Joseph
Richmond, Texas

Patricia C. Kilgallon
Boca Raton, Florida

Mr. Dennis M. Malloy
Houston, Texas

Kenneth R. Marino
Pittsburgh, Pennsylvania

John A. Martell
Granger, Indiana

Mr. Donald J. Massaro
Half Moon Bay, California

Henry J. Massman, IV
Mission Hills, Kansas

Rose-Marie Mazanek
Indianapolis, Indiana

Mr. John E. McNulty
Reno, Nevada

Wayne W. Murdy
Englewood, Colorado

Mr. Dennis F. Murphy
Omaha, Nebraska

Matthew O'Donnell
Seattle, Washington

Mr. Michael A. O'Sullivan
Tequesta, Florida

Melanie R. Sanchez-Jones
Center Valley, Pennsylvania

Mr. Robert N. Schleckser
Naples, Florida

Carolyn S. Seringer
Melbourne, Florida

Joseph F. Sifer
Arlington, Virginia

Christopher G. Slatt
Burien, Washington

Mr. Richard L. Stanley

Six Mile, South Carolina

Mr. Timothy J. Steigauf
Saint Paul, Minnesota

Deacon Patrick Toole, Jr.
Westport, Connecticut

Dr. Jay Traverse
Minneapolis, Minnesota

Peter K. Tully
Locust Valley, New York

Mr. Richard P. Wolsfeld, Jr.
Scottsdale, Arizona